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Stochastic boundary conditions

The region of interest 1s solvated 1n a water

I

sphere at 1atm. The water molecules are

submitted to an additional force field that

als v

ra

restrain them 1n the sphere while maintaining

a strong semblance to bulk water.
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Periodic boundary conditions
The fully solvated central cell 1s simulated, 1n

the environment produced by the repetition of
this cell i all directions.
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Minimum Image J& ]
Use r; not r;

Nint(a)=nearest integer to a
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point charges real space K space
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2)

3)

Microcanonical ensemble (constant V,V,E)
sampling 1s obtained by simple integration
of the Newtonian dynamics:

- Verlet, Leap-Frog, Velocity Verlet, Gear

Canonical ensemble (constant N, V, T

sampling 1s obtained using thermostats :

1) Berendsen: scaling of velocities to
obtain an exponential relaxation of the
temperature to I’

2) Nose-Hoover: additional degree of
freedom coupled to the physical system
acts as heat bath.

Isothermic-isobaric ensemble (constant NV, P, T)
In addition to the thermostat, the volume of the
system 1s allowed to fluctuate, and is regulated
by barostat algorithms.

/ 7
) d=g U
| :*g 7
NVE| "
/ e
LI I II A A AN AN 79994477,
) o o
7 P , *—> | (infmite E
| NV reservoir)
(Il
7
7 A fixed P
L
v
/ .,* b < T
i g . 4| (infinite E
7 N reservoir)
/ v 7 oy,

R A

NN

_\\ NN

™,




Nose-Hoover{B g #iE

Phase space extended by two extra variables : ( r,p,n, p'??)
A ! physical variables
) s Di :

Lt ¢ Newton
: od | D,
D, = —— (1, 1) — =Lp,
l{_______f)_"‘:‘f___): Q'

= %  S— friction term

P2
)y = — — _\; kgl
P m; R\ yme

temperature regulation

® One can demonstrate that the Z(N.V.T) — / drdp —BH (r,p)
canonical distribution is reproduced o
for the physical variables N ]
® Conserved quantity : H(T )= Z 23:’;' + ®(r) + 55 + kgTn
i=1 ’

® Non-Hamiltonian dynamics...



B2 Fish 1%
Langevin Dynamics (LD)

In Langevin Dynamics, two additional forces are added to the standard force field:
- a friction force: Y. P;
whose direction 1s opposed to the velocity of atom 7

- a stochastic (random) force: C(t)  such that <C()>=0.
This leads to the following equation for the motion of atom 7:
- P; S = F
I, =— p;=F.(r)+yp; +C(1)
n.
!

This equation can for example simulate the friction and stochastic effect of the
solvent in implicit solvent simulations. The temperature is adjusted via y and C,
using the dissipation-fluctuation theorem.

The stochastic term can improve barrier crossing and hence sampling.

LD does not reproduce dynamical properties
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Theoretical milestones:

Newton (1643-1727): Classical equations of motion: F(t)=m af(t)
Boltzmann(1844-1906): Foundations of statistical mechanics
Schrodinger (1887-1961): Quantum mechanical eq. of motion: -i/ or W(t)=H(i) ¥(1)

Molecular mechanics milestones:

Metropolis (1953): First Monte Carlo (MC) simulation of a liquid
(hard spheres) I~
Wood (1957): First MC simulation with Lennard-Jones potential é
Alder (1957): First Molecular Dynamics (MD) simulation of §~
a liquid (hard spheres)
Rahman (1964): First MD simulation with Lennard-Jones potential
Karplus (1977) & First MD simulation of proteins
McCammon (1977) >
Karplus (1983): The CHARMM general purpose FF & MD program ,%
Kollman(1984): The AMBER general purpose FF & MD program 3
Car-Parrinello(1985): First full QM simulations
Kollmann(1986): First QM-MM simulations
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Package name

« CHARMM

www.charmm.org

» Amber

amber.scripps.edu

* GROMOS
www.1gc.ethz.ch/GROMOS

* Gromacs

WWW.Zromacs.org

* NAMD

www_ ks uiuc.eduw/Research/namd
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supported force fields

CHARMM (E/I; AA/UA), Amber

Amber (E/1; AA)

Gromos (E / vacuum ; UA)

Amber, Gromos, OPLS - (all E)

CHARMM, Amber, Gromos, ...

E = explicit solvent
| = implicit solvent

AA = all atom
UA = united atom (apolar H omitted)
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1) Topological properties: Gl ¥ 6‘:‘ g

. kf

2) Structural properties: o —

the starting conformation of the molecule, provided by an X-ray structure,
NMR data or a theoretical model
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3) Energetical properties: " [ e
H;C CH;

a force field describing the force acting on each atom of the molecules

77 2P

4) Thermodynamical properties: % | Iy
NV

NN

i

a sampling algorithm that generates the thermodynamical ensemble that
matchese experimental conditions for the system, e.g. N,V,;T', NPT, ...



MD flowchart

Initial coordinates (X-ray, NMR)

!

Structure minimization (release strain)

+

Solvation (if explicit solvent)

v

Initial velocities assignment

!

Heating dynamics (Temp. to 300K)

I

Equilibration dynamics (control of Temp. and structure)

Rescale velocities

Production dynamics (NVE, NVT, NPT)

v

Analysis of trajectory
Calculation of macroscopic values
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The ergodic hypothesis 1s that the ensemble averages used to compute expectation
values can be replaced by time averages over the simulation.

/ ~\ Ergodicity !~
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The microstates sampled by molecular dynamics are usually a small subset
of the entire thermodynamical ensemble.
The validity of this hypothesis depends on the quality of the sampling produced by

the molecular modelling technique. The sampling should reach all important
minima and explore them with the correct probability,

- NVE simulations = Microcanonic ensemble o P = cst.
- NVT simulations = Canonical ensemble > P(E) =elE
- NPT simulations = Isothermic-isobaric ensemble > P(E) = e PETPY)
] . -BE . , .
Note that the Bolzmann weight € 1s not present in the time average because

1t 1s assumed that conformations are sampled from the right probabaility.



